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Andre Longtin
Departement de Physique, Universid@ttawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
(Received 29 July 1996

Noise-induced firing is studied in two major classes of bursting neuron models in the absence of periodic
input. In the biologically relevant subthreshold regime where no deterministic firing occurs, additive noise
induces spiking limit cycles. This noise makes the output firing patterns sensitive to the characteristics of
autonomous subthreshold oscillations, which can change in response to various physicochemical stimuli. The
nonmonotonic behavior with increasing noise of the phase locking between spikes and subthreshold oscilla-
tions, measured using spectral signal-to-noise ratios and line shape characteristics, are a manifestation of
autonomous stochastic resonance in these systems. The type of bifurcation giving rise to bursting activity
determines the behavior with noise of the mean firing frequency, interspike interval histogram, spike train
power spectrum, and phase locking. In particular, it is shown that a saddle-node bifurcation is not required to
see stochastic resonant®R) without periodic input when there exists a stable deterministic subthreshold
oscillation. This paper also studies SR in a detailed ionic neuron model, an approach that leads to tests of
hypotheses regarding the nature of noise in real neuf&i€63-651X%97)12001-3

PACS numbds): 87.22.Jb, 05.46:]

[. INTRODUCTION a fast subsystem, which produces spikes, and a slow sub-
system, which oscillates autonomously and independently of
There has been much recent work on stochastic resonantlee occurrence of spikes. “Bursts” or groups of spikes arise
(SR) in excitable neural systeni&]. Work on SR in neuro- When the slow wave oscillation brings the membrane voltage
biology has shown that noise helps neurons fire near a prdast the activation threshold for the fast currents underlying
ferred phase of small amplitude external periodic stimulithe generation of spikesee Fig. 1 This slow oscillation
giving them the ability to detect subthreshold signals. At thevould persist even if one or more of these fast currents were
same time, major advances in neural dynamics and compihibited. The Plant modé¢ll1] is chosen here as a represen-
tation have highlighted the potential importance of neuronalative of this class. Below, we study this model with additive
oscillations as carrier signals for coding mechanidik : : : : : :
These mechanisms rely on the timing of firing events 40 | @ D=0 1=-0.04

(“spikes™) with respect to single neuron or network oscilla- 0
tions. These studies have emphasized that autonomous sub- -40
threshold and bursting oscillatioriBig. 1) are key elements

-80

of neural coding. The generation of network oscillations with = ! - - ! = : ' ,

noise as an essential facf@], and the influence of noise on € 40 | ® D=0.0075 1=-0.05

the timing of spikes with respect to external sigfdshave w 9

previously been investigated. However, the possibility that g 40 Y

noise may enhance timing with respect to autonomous 5 -80

rhythms has received little attention. 9 : ’ ‘ : ' = =
Recent experimentfb] and modeling6] studies of tem- 40 { © D=0.075 1=-0.05

perature receptors in certain mammals and electric field re- 0

ceptors in certain fish have concluded that firing patterns -40

from such neurons are generated by the interplay of sub- -80 A

threshold oscillations and noise. These studies have sug-
gested that such neurons may exhibit &Rhout external
forcing. SR without external forcing has recently been stud-
ied in a simple dynamical system right at a saddle-node bi-
furcation [7]. The noise-induced limit cycle and the noise-
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FIG. 1. Membrane voltage vs time for Plant's model of “slow
wave” bursting[Egs.(1)—(6)]. (a) Periodic suprathreshold solution

induced shifts of its mean frequency are consequences of thg, ' p_g and 1=—0.04. () A subthreshold solution with
nonuniformity of the cycle, and of the dependence on noisgy_q 0975 and =—0.05: noise is required to produce spikés.
of the first passage time for such bifurcatiggs9]. Same agb), but D=0.075. The numerical integration time step is

The present paper shows that bursting neuron models, bs.25<10°2 msec. Parameters anre=4.0, p=0.0017, G,=7.84,
ased into the subthreshold regime a$5(6], indeed exhibit G =0.01,G,=0.363,G-=0.03, G, =0.003,K,=0.0085,V, =30,
novel types ofautonomousSR. The noise-enhanced phasey, =-75,Vv =-40,V-=140,Cy,=1, r,=235, andt,=1.0 msec.
locking of spikes is discussed here for two important classe®ther parameters and voltage dependencies are[a4]inAll these
of bursting dynamic$10]. In the first class, which we refer parameters produce solutions where voltage is in millivolts and
to as the “slow wave” case, the full dynamics separate intatime is in milliseconds.
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noise in the regime where the slow wave has a large ampli- n=x[n.(V)—n]/r,(V), ®)
tude, but is slightly subthreshold for the fast dynamics; in

other words, no spikes are generated in the absence of noise. X=N[Xo(V) = X]/ 7, (4)
This is the biologically relevant ca$g,6]. We find that this

stochastic model exhibits genuine autonomous SR without C=p[KX(Ve—V)—C], (5)

the requirement of a nonuniform limit cycle, in contrast with

previous studie$7,8]. 1 1
In the second class, bursts are driven by spikes, and thus n=—— n+— &t). (6)

we have the label “spike-driven” bursting. This label means te ™t

that the alternation between an active phase, during which ) . .

many spikes are generated in fast succession, and a quiescefif) iS @ fast variable representing the membrane voltage,

phase where no spikes occur, requires the occurrence 95X aré gating variablesC is the intracellular calcium

spikes. The spikes produced during the active phase cau§@ncentration, and is a bias current.(t) is a zero-

variations in one or more slow variables, with the result thaf"€an Omstein-UhlenbeckOU) process with correlation

the mean membrane potential is progressively lowered untiMe tc and autocorrelation  function (#(t) 7(s))

spikes can no longer be generated. The membrane potentiﬁl_(D/tc)eXp(_|t_5|/tc)' The other parameters and the de-

then increases slowly during this quiescent phase, until rapif/led voltage dependencies af, 7,, h.., n.., m.., andx.,

firing resumes, and the cycle repeats. The specific modd'® @s in Ref[11]. In the following, we refer to the noise

used, the Hindmarsh-Ros¢/R) model [12], has recently Nténsity asD.

been studied in the chaotic bursting regime in the context of

synchronized oscillations in networks of cortical neurons B. Numerical integration method

[13]. Some of the features of the noise-induced firing in this

e We now discuss the numerical integration of our model
model are shown here to be similar to those reportddjn g

) X . _equations. There are different methods to integrate the stiff
Our.results are alsp a demonstration of SR.II’] a deFalle eterministic system Eqg1)—(5). Best results are usually
Hodgkin-Huxley-type ionic model of neuron firing, an im- ohained with implicit schemes, which allow the use of a
portant step in characterizing the influence of various nois¢e55onaple time step, all the while ensuring solution stability

sources on the dynamics of real neurons. Our findings Clearl("see e.g[15]). However, one must proceed very cautiously
indicate that neurons in the two classes described above cag, t’he integration of tﬁese equations in the presence of

sharpen their timing as the intensity of noise increases OVer Asise. in order to ensure proper sampling of the stochastic

certain range. This noise can be due to intrinsic conductancg.as |n general this can be achieved using an explicit
fluctﬁatlo_ns in the membrande/ of ﬂ;e neuf6i, as well as 10 fyo 4 step method16]. Our conservative approach to this
stochastid(see, e.g.[14]) and/or chaotid13] synaptic cur- it stochastic system is thus based on the method discussed

rents. in [16] for systems driven by colored noise. It involves inte-

The paper is organized as follpws. Section Il presents thﬁrating Eqgs.(1)—(6) using a fixed-step explicit scheme for
stochastic Plant model, a Hodgk|n—HL_1xIey—type ionic mOdeIEqs.(l)—(S), coupled to an integral Euler algorithm for the
of autonomous slow wave bursting biased into a subthreshjeoration of the stochastic OU process. This numerical in-
old regime. Numerical integration results for time series d's'tegration of the Gaussian white noise in E8). produces the

tributions of interspike intervals and spike train power specqored OU noise, which, due to its simple additive coupling

tra are also discussed in Sec._ll. Section Il presents thr%ethe voltage dynamics E€L), acts as a driving force on the
Hindmarsh-Rose model of bursting near a saddle node, a terministic system Eq$1)—(5). The algorithm in[16] is

the associated interval distributions and spike train powey, o adapted to this kind of coupled dynamics.
spectra. It also discusses the difference in phase locking for However, since the deterministic system is stiff, it is im-

the two models of interest. Results on autonomous StOChaStBbrtant to use such an explicit method with a very small time

resonance in both models are then presented in Sec. IV. S in order to obtain accurate spike times. This time step
tion V offers a characterization of the firing statistics, and

) ) must be small enough to properly integrate the noise process
discusses the relevance of recently proposed theories t0 thi§, general, it must be smaller than the noise correlation

characterization. The paper concludes with Sec. V. time), and produce a solution to the deterministic system
with the required accuracy for the study of the phenomena of
[l. NOISE-INDUCED BURSTING FROM A SLOW WAVE interest. The time step must also produce sufficient accuracy
A M for properties of the stochastic system, such as the interspike

. Model . . . o
interval histogram, or mean interspike inter¢ate below.

The Plant model of slow wave burstifigl] with additive  All these factors lead to lengthy simulations. We have found
stochastic forcing, used to model thermorecepid} is  that the simple Euler forward scheme produces the required
governed by the following equations: accuracy for a time step 0§/16=0.0625 msec. It was found

. 3 4 to be more accurate for the stochastic case than the fourth-
CuV=GmM(V)h(V|=V)+ Gy x(V, = V) +Gn* (Vg —V) order Runge-Kutta method for an equivalent computation
time, even though both methods produce practically identical
+Ge =—=——= (Vk=V)+ G (V —V)+I+5(t), (1) deterministic solutions for both the bursting and nonbursting
0.5+C cases.
. The phenomenon described in our study, i.e., the behavior
h=\[h.(V)—h]/m(V), (2)  of the stochastic phase locking as a function of noise inten-
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sity, can already be seen for time steps as large as 0.5—1 1000 1000

msec. For these and smaller time steps, the deterministic s D=0.0075 @ 1 D=0075 (o)

lutions and the properties of the stochastic solutions showa

clear convergence; i.e., the percentage in variation of solus 500 500

tions and properties decreases as the time steps are halveﬁi. 250 250

The time step we have chosen, 0.0625 msec, provides greatgr AR

accuracy than those of 0.5—1 msec; it produces 320 integra- ~ © 0 3 10 s 5 10 s

tion steps for the approximately 20-msec action potential. INTERSPIKE INTERVAL (SEC) INTERSPIKE INTERVAL (SEC)
The accuracy of the §o|uti0n§ using this 0.0_6?57msec tir_neA 10 D=0.'0075 ' (b) 10 D=0075  (d)

step was assessed by integrating the deterministic equation8

(with zero noisg¢ with a slightly different value ofl (1= T 1

—0.04 instead of—0.05, producing deterministic bursting g W/\JM

with three spikes per burgFig. 1@]. The corresponding & © 01

interspike intervals(ISI's) were 2604.4, 112.7, and 1479 %

msec. Halving the time step to 0.03125 yielded new ISI’s, 00l o5 10 15 20 o0 o5 10 15 20

which differed from these by, respectively, 0.3%, 1.1%, and FREQUENCY (Hz) FREQUENCY (Hz)

3%. The ISI that dominates the behaviors studied below,

such as the power at the basic frequency of the noise-induced FIG. 2. Interspike interval histograms and spike train power
bursting, is the long one corresponding to the duration of thépectral densities from simulations of E¢$)—(6) with | =—0.05.
quiescent phase. Since the variation of this ISl is very small(@. () D=0.0075.(c), (d) D=0.075. For each noise intensity, 100
and since the other ISI variations are also small, we havéealizations were used to generate 200-bin histograms(@nti0

used the time step of 0.0625. Our integration method show§Z Spectrum averages. Parameters and time step are as in Fig. 1. A
clear convergence of ISI's to almost identical values upor§p|ke is counted if it reachc_as 0 mV. In each realization, statistics
halving the step further and further. were computed, after>810° time steps of transients, over a 204.8-

In the presence of noise, the effect of halving the step siz%ec window formed by the next 3AC° time steps. 4096-point
on the spike times can of course only be assessed in a stat gnnlng-_wmdowed fast Fourier transforms_ were computed using
tical sense. This follows from the fact that halving the time;p'ke trains resampled at 0.05 4] (Nyquist freq_uencyfszlo

. . . . z), a value smaller than the smallest computed interval.
step requires twice as many “noise” values, and the realiza-
tion is thus different from the original one with the larger
time step. We have found that the ISI histograft®H’s)  tensity D=0, spikes occur provided this “slow wave”
obtained using different small time steps have qualitativelyreaches the activation threshold of the fast spiking dynamics.
similar shapes. This is basically true for the power spectrd’he fixed point(no firing) to limit cycle (repetitive firing
also, namely, for the power in the fundamental pés#te transition in the fast dynamics is of the homaoclinic tfp&].
below), but smaller time steps reveal more detailed structure\ bursting pattern occurs because the slow wave moves the
in the spectra. The effect of the time step on the mean ISfast dynamics from fixed point to limit cycle and back.

(see below was found to produce larger variations than in
the deterministic case. For example, for a midrange noise
intensityD =0.01, halving the time step produces a mean ISl ) )
within 1.5% of the one for the 0.0625 time stg545 msek; We now discuss the parameter range of interest. The
but further reduction produces a convergence toward a valughysiologically relevant cases are the suprathreshold case
within 15% of 2545. This is true for the mean IS| with and Where bursting occurs, and also the subthreshold case where
without bursts(see below. This and other tests suggest that “skipping” occurs. Skipping is a form of stochastic phase
15% is a conservative estimate of the error on signal-to-noistocking in which neuron firings occur near a given phase of
ratios and mean ISI's calculated below. Of interest also is theome periodic forcing, but are separated by a random integer
fact that the mean ISI values obtained for a given time stemumber of cycles of this periodic forcing. In the context of
but for different sets of realizations fluctuate statisticallythe five-dimensional Plant model, the slow wave of the slow
with a standard deviation of approximately 1%. subsystem in some sense acts as a periodic forcing on the

Clearly, higher accuracy can be achieved with time stepfast dynamics. In Fig. (b), the bias current is=—0.05, and
smaller than 0.0625 msec and, most likely, higher accuracthe slow wave is subthreshold: spikes occur only Bo0.
and computational efficiency could be achieved using suitThey appear in bursts of one or more near the crest of the
ably tested more sophisticated algorithms. This is beyond thslow wave, their number increasing wih.
scope of our study. Our aim, achieved with the integration Figures 2a) and 2c) show ISIH’s computed from many
scheme we have chosen, is to illustrate the basic phenondgifferent realizations of the stochastic Plant model. Intervals
enology of noise-induced firing in two classes of burstingat integer multiples of the slow wave period are seen, as well
cells with a given high level of accuracy. Our results do notas short intervals measured between successive spikes inside
change qualitatively with smaller time steps. a “burst.” It is clear from these results that firings are phase

A deterministic solution of Eqs(1)—(6) (i.e., a solution locked to the slow wave, and groups of spikes or “bursts”
with D=0) is shown in Fig. 1a). One can see fast spikes are separated by a random number of slow wave cycles. The
occurring on top of a slow wave. This system is decomposmean number of slow wave periods skipped between bursts
able into a fast subsystenV(h,n), and a slow subsystem decreases ab increaseqFigs. 4a) and Zc)], a familiar
(x,C) that oscillates autonomousft7]. For zero noise in- feature of systems that display $&8,19.

C. Interspike interval histograms and power spectra
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The phase locking of spikes to the subthreshold slow
wave can also be analyzed using spike train power spectra. 00l @ D=0 i=13
Based on previous studi¢20], the spectra of noise-induced
bursting solutions are expected to have an intricate structure 0.0
of harmonics and sidebands. Each spike in a realization was
convolved with sin(zrf t)/(27ft), and then resampled us- < 20 : .
ing f. as the Nyquist frequency. This methf®il] produces E Lol ® D=0.001 i=1.25
spectral estimates that are alias-free across a spectrally flat w
window (0,f,). The low frequency portion of power spectra, g oo
computed from the same realizations as the corresponding 5
ISIH’s, are shown in Figs. (®) and Zd). Harmonics of the g 2.0 ' . —
mean slow wave frequendy,=1/T, are seen over a curved 00l © D=0.025 i=1.25
background, along with pairs of peaks between these har-
monics, which are most likely noisy precursors of a Hopf 0.0
bifurcation[22].
The signal peaks are broad when compared to simulations 20 ; :
of externally forced stochastically resonant systefese, 0.0 10 TIMEZ'?SEC) 3.0 4.0

e.g.,[1,23,25). This is due to the fact that the dynamics are
autonomous and driven by noise. This leads to phase fluc- £, 3. Membrane voltage vs time for the Hindmarsh-Rose
tuations in the slow wave, a phenomenon known to broadegodel of “spike-driven” bursting[Egs. (7)—(9)]. () Periodic su-
peaks at harmonics of the signal frequeri@@]. We note  prathreshold solution fab =0 andi=1.3. (b) A subthreshold solu-
that there are two kinds of phase averagings in our compuion with D=0.001 and =1.25: noise is required to produce spikes.
tations: an “intrinsic” one, due to the noise itself, and an- (c) Same agb), but D=0.025. The numerical integration time step
other one, added to our simulation code, which produces 6.25<10 ° msec. Parameters aee=1, b=3, c=1, d=5, s=4,
phase-averaged power spectra. This latter averaging is dome-0.001,x*=—1.6,i=1.25, andt,=0.1 msec. These parameters
for each realization by shifting the spike train by a randomproduce solutions where voltage is in millivolscaled with respect
fraction of the mean slow wave peridg. This averaging is to experimental valugsand time is in milliseconds.

useful in comparing simulations with experimental results in

which the phase of the slow wave is different at the beginX, as was done for the Plant model in Sec. Il. This model, in

ning of each spike train measurement. It would be practicallyontrast with the one studied in the previous section, does
impossible, especially at higher noise levels, to experimentot have a deterministic slow subsystem that can oscillate in

tally control for this phase, in contrast with the case of ex-the absence of spikes. Without noise and in the suprathresh-

ternal forcing. old regime, spikes always accompany the slow oscillation, a
At higher noise levels, this second averaging is not necconsequence of the particular bifurcation structure of the de-

essary in principle, especially if long transients are discardederministic flow. In contrast, the spikes can be eliminated in

since the phase of the slow wave becomes randomized by tfige suprathreshold regime of the Plant model, e.g., by setting

noise during the temporal evolutigagain in contrast to ex- G;=0 in Eq. ().

ternally forced systemsAt low noise, the phase of the slow

wave is not significantly perturbed by the noise, and thus the B. Numerical integration method

“‘added” averaging helps. The spectral peaks are neverthe- r,q giscussion in Sec. 11 B on the choice of numerical

Iegs broad at Iow.n0|se b_ecquse only a smgll nu'mber Yhethods also applies to the equations in this section. The

spikes occur in a given realization. These considerations alsqq step Euler forward scheme coupled to the integral Euler

apply to the HR model investigated in the next section. scheme for the OU proce§s6] was used as in Sec. Il B for

the same reasons. The accuracy of the spike times in the

1. NOISE-INDUCED BURSTING absence of noise was checked as in the previous section, i.e.,
NEAR A SADDLE-NODE BIFURCATION by slightly changing the bias currenfrom the subthreshold
A. Model case value 1.25 to the suprathreshold case 1.30. With the

) ) o o chosen time step of 0.00625, this yields a solution with five
We now investigate noise-induced firing from the SUb'spikes per burst, with ISI's of 535.5, 15.1, 17.1, 20.8, and
threshold regime in an(_)ther important class of burstling Neu3e.0 msedFig. 3a)]. As in Sec. Il B, we have found a clear
ron dynamics. The Hindmarsh-Rose mod@P] typifies  convergence of all solutions, and thus of the ISI's, as time
“spike-driven” bursting[10]: steps are successively halved. This convergence is seen start-
ing from time steps eight times as large as 0.00625. With a

vl 3 2
X=y-axitbxiri=z+ (), ™ time step of 0.003125, the long ISI corresponding to the
) ) duration of the quiescent phase, which is the most important
y=c—dx“—y, (®) ISI from the point of view of our characterization of noise-
. induced firing, varied by 0.28%, while the others varied by
z=r[s(x—x*)—z]. (9)  3.2%, 4.1%, 6.3%, and 21%, respectively. Comparison to a

simulation with a time step 128 times smaller than 0.00625
Note that the HR model ifil2] was extended here by adding yielded variations of, respectively, 0.15%, 6.2%, 7.8%, 11%,
an OU procesg to the dynamics of the fast voltage variable and 32%. The higher error in the last ISl is expected from the
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slowness of convergence of the solution due to the crossing 100 500
of a saddle-node bifurcation into the quiescent phase. % 80 p=000t (@ | D=0.025 (c)
In the presence of noise, we have found that the variations 3 o0 200
in mean ISI upon halving the time step from 0.00625 to &
0.003125 are smaller than for the previous model in Sec. § * 200
Il B. For example, forD=0.01, the mean ISI goes from 176 = 20 100
=

to 161 msec, a 9% variation. Our tests indicate that the error 0 ] 5 0 ; 3
on mean ISI's and signal-to-noise ratios calculated below are INTERSPIKE INTERVAL (SEC) INTERSPIKE INTERVAL (SEC)
probably lower than 15%, our estimate for the Plant model. 10’ ' D—0.001 b 10' D=0.025
We note that the mean ISI's without burgsee below vary o (®) ’ @
less(2—3%) than in the stochastic Plant model upon halving
the time step. The statistical error on these mean ISI's is }
again on the order of 1%, as for the Plant model. MM\V 10
The neurophysiologically relevant regime for this system . R
is again the case where bursting occurs, and also the sub- '* ¢ 5 10 150 5 5 10 15
threshold case where deterministic firing is not possible. If FREQUENCY (Hz) FREQUENCY (Hz)
the bias parametdr>1.26, the deterministic dynamics are
suprathreshold, and the slow variahte causes periodic
crossings of a saddle-node bifurcation. This produces a slo

aIt(_arnatlon betwgeen two globally stgble attractor;: a f'x,e%tensity, 100 realizations were used to generate 200-bin histograms
po,'m and a fast limit cycle. A relfaxat!on-type .burstlng oscil- and (0, 120 Hz spectrum averages. In each realization, statistics
lation then ensues, as shown in Figaj3for i=1.3. The \yere computed using 271¢F time steps(17.1-sec window fol-
subthreshold case of interest in our study is characterized bywing 2x10° time steps of transients. Parameters and time step are
the absence of a deterministic limit cycle. This subthresholds in Fig. 3. A spike is counted if it reaches 1 mV. The spectra were
regime is achieved when<1.26; noiseless solutions then computed as in Fig. 2, but with a Nyquist frequency of 120 Hz.

converge in an oscillatory manner to a globally stable fixed
oint (i.e., the linearization around the fixed point has a pair - o

gf coﬁnplex conjugate eigenvalye\oise canp then inducF()e induced limit cycle that does not have a deterministic coun-

bursting sequences, and the mean time between groups tgrpart. Its sharpness depends on the nesiee Sec. IV, but

spikes decreases as the noise intensity increases, as seer@iyP On the fixed point dynamics and of course on the fact
comparing Fig. &) and Fig. 3c). that the dynamics undergo a global saddle-node bifurcation

at the threshold for burstinghe period is infinite at such a
bifurcation [7-9].

o 0

° 10

—
(=]

POWER (mV*/Hz)
3,

FIG. 4. Interspike interval histograms and spike train power
Vs\PectraI densities for the Hindmarsh-Rose mod&ds. (7)—(9)]
ith i=1.25.(a), (b) D=0.001.(c), (d) D=0.025. For each noise

C. Interspike interval histograms and power spectra

Interspike interval histograms and spike train power spec-
tra were also computed in the same manner as those for the
Plant model. They are shown at two noise amplitudes in Fig. The dependence dn of the fundamental mean frequency
4. In comparison to the slow wave case in Fig&2and f, and of the phase locking for both models is contrasted in
2(c), the ISIH modes at integer multiples of the slow time Figs. 5 and 6. Figure 5 shows spike train power spectra at
scale of bursting for the noisy HR model are less clearlylow frequency, calculated from the Plant model for increas-
defined; in particular, one does not see many modes sepaig noise intensity. The highest peak in each spectrum cor-
rated by interval ranges where no events occur. In otheresponds td,. This frequency is seen to be almost constant
words, the phase locking of the noisy excitable dynamics obver three orders of magnitude BX, since the slow wave,

HR to its internal slow time scale is weaker than in the au-which arises from a Hopf bifurcation in the slow subsystem,
tonomous slow wave case of the Plant model. exists even without noise in the subthreshold regjfi&6)].

The reason for this difference in the degree of phase lock- Spectra from the HR model for increasiBgare shown in
ing is that the slow time scale in the subthreshold HR casefig. 6. The main peak d, is clearly broader than the one for
which is strongly dependent an(increasingr shortens the the Plant model, a consequence again of the noise-induced
bursting period in the suprathreshold regimés not as nature of the limit cycle. Furtheff,, increases wittD over
sharply defined as in the Plant model. In the Plant model, théhe range of noise intensities studied, as sedidinalthough
slow wave is self-sustained on a two-dimensional submanithe increase is minimal at the high&r values used. We
fold, with or without noise. This slow wave is much more anticipate thaff, will decrease at even higher noise levels,
stable to noise, except if it is about to disappear at soméollowing the behavior seen ifi7], but it is likely that the
bifurcation in the slow dynamic§l17,6], which is not the meaning of the results will then be questionable since action
case here. Further, its high stability is not affected by the facpotentials will be strongly distorted. At high, a sharpening
that the transition from fixed point to limit cycle in the fast of the 2f, harmonic is seen, due to interspike intervals near
subsystem is of the homoclinic type. Hence the slow timemultiples of T¢/2. These arise because the complex eigenval-
scale is sharp even in the presence of noise, which leads tees at the fixed point cause oscillations between bursts with
strong phase locking when the system is subthreshold. Howa period near these multiples.
ever, for the subthreshold HR case, the slow time scale is not Figure 5 also shows that the fundamental peak sharpens at
so sharply defined since we are in the presence of a nois®~0.075 for the Plant model, while Fig. 6 shows the same

IV. AUTONOMOUS STOCHASTIC RESONANCE
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FIG. 5. Spike train power spectral densities computed from 100
realizations of the Plant model at each of the following values of
noise intensityD: 0.00075(1), 0.0025(2), 0.01(3), 0.075(4), and
0.5(5). Other parameters are as in Fig. 1. Only the lower frequenc
part of the spectra is shown on these lin-log plots.

FIG. 7. (a) Signal-to-noise ratios an@ vs D for the Plant
model. We us@bgyr=10 log,o( S/N), whereS(N) is the area of the
JO peak (using 11 bins centered ofy) above (below) the noise
floor. This floor is a line joining the relative minimum about half-
way through(0, fg) to that in (fy,2 fg). Also, B=(hfg)/(Af),
whereh andf are the peak height and centroid, akflis the peak
for the HR model aD~0.025. These “resonances” can be width at heighte” ¥?h. (b) Mean intervalT) vs D using all inter-
analyzed using the signal-to-noise rafeNR) [1] and the vals(lower curvg, and neglecting the short intervals in bur@ip-
degree of coherencg [7]. This latter quantity is defined as per curve. The data in(b) are fitted to(T)=C,D"exp(C,/D),
the peak heighlt divided by its relative widthAf/f,, where  yielding C,=0.325, C,=0.000208,v=—0.441 (lower solid ling,
Af is the peak width at half maximum. Results are shown inand C;=1.763, C,=0.000205,v=—0.256 (upper solid ling. The
Fig. 7(a) for the Plant model and in Fig.(& for the HR  cutoff between short and long ISI's was chosen equal to 700 msec.
model. It is important to point out that, for both models, the

breadth of thef, peaks and the presence of secondary peaks

complicates the estimation of signal-to-noise rat®ese Fig.

7), and is responsible for significant uncertaintiesl dB) at

the highest noise levels shown. 5| s uSNR @)
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FREQUENCY (Hz2) FIG. 8. (a) Signal-to-noise ratios and vs D for the Hindmarsh-

Rose model. Th&gyg and B are calculated as in Fig. ) Mean
FIG. 6. Spike train power spectral densities computed from 100nterval (T) vs D using all intervals(lower curve, and neglecting
realizations of the Hindmarsh-Rose model at each of the followinghe short intervals in burstsipper curvé The data in(b) are fitted
values of noise intensit{p: 0.001(1), 0.0025(2), 0.005(3), 0.025 to (T)=C,D” exp(C,/D), yielding C,;=0.0957,C,=0.00103,v=
(4), 0.0375(5), and 0.056). Other parameters are as in Fig. 3. Only —0.115 (lower solid line, and C;=0.221, C,=-0.000162,v=
the lower frequency part of the spectra is shown on these lin-log-0.248 (upper solid curve The cutoff between short and long
plots. ISI's was chosen equal to 150 msec.
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In our study, all spikes were used to calculate the spikehe slow wave case in Fig(f), the data are well fitted to a
train power spectra. The SNR for the slow wave case in Figrelationship of the form
7(a) is seen to exhibit the familiar SR maximum as a func-
tion of D without external forcingi.e., autonomous stochas- (T)=C,D" exp(C,/D), (10)
tic resonance. Past the maximum, the decrease in SNR ap- o _—
pears to be slow. Simulations fBr>1.0 are problematic and SNOWn as the solid lines. For the HR case in Fifh) 8the
are not presented here, as spike size and shape vary enodgifves are also .WeII fitted to th!s expression, yet the S|tur_:1—
to make the definition of threshold ambiguous. In contrast t¢ons With and without the short intervals appear to be quali-
the external forcing cagd], the SNR drop at higl> in this tatively different. This may be due to the uncertainties on f[he
model is also due to the disruption by noise of the coherencEoMpPuted values of the mean ISI's. Note that for HR with
of the autonomous slow wave. Our computations also showshort intervals excluded, the fit is not physically meaningful
that, for skipping from a slow waveg goes through a maxi- at small noise, where the mean interval goes to zero instead
mur’n at a much larger value & than that for the SNRnot of infinity. This is due to the uncertainty on the small value
shown in Fig. 7. Hence,3 does not appear to be useful to of C,. Howeve_r, these data are also well fitted by a simple
characterize the autonomous stochastic resonance. This ROWer law, with »=-0.207, C,=0.257, andC,=0 (not

likely a consequence of the robustness of the slow internai"oWn, which has the proper behavior at small and large
time scale in this class of bursting neurons, and of the faciise- Further, this is compatible with the power law depen-

that 8 does not directly take into account the noise floord€nce(although with a different exponent=—1/3) of the
around the signal peak. mean first passage time found for a simple one-dimensional

In contrast. for the HR model. the absence of a self.model of the center manifold dynamics for a system near a

oscillating slow subsystem along with the influence of theSaddle-node bifurcatiof®]. _ ,
saddle-node bifurcation yields lower SNR valitg. 8a)]. The fact that the above expression Eg0) provides a
However, for this class of spike-driven bursters, both thePTOPer fit to the data implies one of many possibilities. For
SNR ands can be used to characterize the resonance, as bofi¥@mPple, one can follow a simple analysis in which the ap-
go through a maximum near similar valuesf Note that proximate t|rr_1e-depende_nt Kr_amers rate, _normally used for
the small peaks flanking the fundamental peak in Fig),6 external forcing[24,25, is written rather in terms of the
present for all the noise levels studied, increase the uncePhased of an autonomous oscillation,
tainty in our SNR estimate. _ _ _

We have not studied SR by comparing time scales of the a(0)=exd —(U/D)(1=7 co)], (1)
SIFt"k’]V tvk\‘/ave(PIang or of t{]e_n();rs]e—lnguced I'”]:'ttr?ydé"ﬁ)th whereU is a constant representing an effective barrier height
with the mean firing rate in the absence ol ese MyINMy threshold for the spiking proceéise., for the fast dynam-

[19,23, since altering parameters to “turn off” these oscil- jog) | the HR case, the autonomous oscillation is the noise-
lations and compute a “spontaneous” firing rate will affect j,y,ceq jimit cycle, while in the Plant case, it is the slow

stability properties. Also, although the variation of ISIH peak,,ave This mean rate, which can be viewed as a mean firing

heights Wit_hD is nonmonotonip, it doe; not exactly follow rate (in spikes per secondis well approximated by the re-
the bona fideresonance for simple bistable systefdS].  j5roca) of (T), this average being computed across many
Noise likely samples other behaviors of these complex modrejizations(the mean rate andT) are identical if the first
els, which alter the smooth progression of statistics \Bith spike corresponds with the beginning of the averaging pe-
riod). The average ofa(6) over one oscillation cycle is
ag=(a(0));=exp(=U/D)Ily(z), wherez=Uz/D and |, is
the modified Bessel function of order zero. In our study, it is
Analysis of the dependence of the mean inte@ and  clear thaty<1, since the dynamics are subthreshold, a con-
of the SNR orD can provide insight into the residence-time dition required to see stochastic resonance in the formalism
statistics, and thus into the nature of the noise activation tof Ref. [25]. However, it is not clear whetheris small, of
threshold for these complex dynamical systems. A recentrder one, or large. I is large(in practice, forz>2), the
review of such questions for simple neuron models can b@symptotic expansion fdi(z) yields
found in[14]. The mean interval is plotted agairi3tfor the
Plant model in Fig. @) and for the HR model in Fig.(8).
In both cases, results with and without inclusion of the short @0~ N exd —U(1-7)/D]
intervals inside groups of spike$bursts”) are presented.

When these short intervals are excluded, the remaining intefri,s the mean rate, would be approximated by E¢10)
vals represent the residence time in the nonfiring state. Whegity ,=—0.5, andC,=U(1—7)>0. For the Plant model
the short intervals are considered, the residence-time intefnere is qualitative agreement with this analysis, since we

pretation implies that the system returns to the nonfiring statgnq ,= —0.44 when the short intervals are counted, and also
after each spike, rather than after each group of spikes. Iny positive value foiC,.

clusion of the short intervals lowers t{&) values, and also " Another possibility is that the Kramers rate approximation
changes the slope and curvature of¢fi¢ versusD relation-  ig not valid, or has a prefactd(D):
ships.

We have found that, in the range of model parameters a(t)=f(D)exd —(U/D)(1— n cosd)]. (13
where autonomous SR occurs, an increasB iproduces a
decrease ifT), as expected for subthreshold dynamics. ForThis leads to an expression for the mean rate

V. CHARACTERIZATION OF THE FIRING STATISTICS

1/2

Ur (12)
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ao=f(D)exp(—U/D)ly(2), (14) refinements of the theory {i25] or other theories are needed
to account for the behavior of the mean firing rate and SNR
which, for z<2, can be approximated bya, for increasing noise.
=f(D)exp(—U/D). This would be compatible with our fit if

z<_2 andf(D)=|_:)"’._ This firing rate would furthe_r lead, VI. CONCLUSION
using the formalism if25], to the following expression for
the SNR(Pgp): In summary, we have shown that autonomous stochastic

resonance can occur in a wide variety of neurons whose
213(z bursting dynamics fall into two distinct classes. Our study
lo(2) also investigates stochastic resonance in a full ionic descrip-
tion of neural firing. The study of such models with stochas-
However, this expression does not provide a very satisfyingic forcing is essential to test more refined hypotheses regard-
fit to our numerical daténot shown. ing the nature of the noisée.g., additive noise currents,
Intuitively, the modulated shot noise thedr®5] would  and/or synaptic events, and/or conductance fluctugtioms
most likely apply to the slow wave case studied here, sinceeal neurons.
this is the case where the autonomous rhythm is very robust It is important to realize that the motivation to study the
to noise, as in cases with external forcing for which thisperiodicity of the spike trains in the stochastic Plant and HR
theory was developed. Even for the Plant case, however, th@odels is not to find conditions under which spikes are
behavior of the SNR as a function bBf is not well fitted by ~ maximally phase locked to some internal oscillation. Clearly,
this theory. This is not too surprising for the following rea- this can be achieved by simply considering the suprathresh-
sons. First, that theory assumes that firing events are uncopid case of bursting without noise. Rather, the point here is
related. Thus, it is not expected to predict the mid-to-highthat real receptor neurons appear to be using the subthreshold
noise behavior, since the spikes tend to be strongly correregime in order to encode certain stimiii6], such as varia-
lated due to bursting.e., the fast limit cycle dynamigsand  tions in temperature and/or electric fields. Our study thus
also because the theory does not take a refractory period infocuses on the dynamics of this regime, and in particular, on
account, i.e., the time after a spike during which no othetow sensitive the firing pattern is to the noise, the dc bias
spikes can occur. (mainly through parameters and i), and the bifurcation
Also, the theory inf25] was developed for a simple peri- |eading to the subthreshold dynamics. Fluctuations in noise
odically modulated shot noise process, not for a complexnputs or dc bias, while producing relatively little change in
nonlinear ionic model of bursting dynamics. In particular, the mean firing rate, strongly alter the phase locking of the
when skipping occurs, there is a strong preference for firingpikes. As these quantities change in response to environ-
near a given phase of the autonomous oscillation, mainlynental stimuli, this sensitivity of the phase locking may be
because of the fast limit cycle dynamics. This should beof great potential benefit for signal encoding purposes.
contrasted with a more continuous modulation of a firing Finally, the behaviors as a function &f of the mean
rate, implicit in the modulated stochastic Poisson point profiring rate, with and without taking bursts into account, and
cess formulation. This is obvious from the time series inof the ISIH’s, spike train power spectra, SNR, gBdincov-
Figs. 1 and 3. Thus, in the case of bursting neurons, the ratered in our work can serve to classify the subthreshold dy-
is not accurately fitted by E¢11), since higher harmonics of namics in real bursting neurons. Also, the addition of noise
the internal frequency have to be includesbe, e.9.[27]).  currents to the experimental preparations should produce
Because of the exponential nonlinearity, these harmonics ishorter skips between firingéollowing Figs. 7b) and §b)]
turn affect the value of the amplitude of the fundamentalif the dynamics are subthreshold to begin with. Thus, noise
component, which will then, in the formalism [#5], affect  can serve to probe the origins of stochastically phase locked
the SNR. A further shortcoming of this approach, when onlybehavior in real neurons in isolation or in networks.
long intervals are considered, is the implication that at most
one spike can occur during a cycle of the slow oscillation,
even though the time scale of this oscillation is much larger
than the refractory period. This is not expected for modu- The author wishes to thank lvan L’Heureux, John Rinzel,
lated shot noise, in which zero, one, or more spikes caMarc Courtemanche, and Gary Slater for valuable discus-
occur during a cycle under these conditions. Clearly, furthesions. This work was supported by NSERCanada

2

® =10 Iogw[ exf —U/D]f(D)|. (15
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