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Autonomous stochastic resonance in bursting neurons
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~Received 29 July 1996!

Noise-induced firing is studied in two major classes of bursting neuron models in the absence of periodic
input. In the biologically relevant subthreshold regime where no deterministic firing occurs, additive noise
induces spiking limit cycles. This noise makes the output firing patterns sensitive to the characteristics of
autonomous subthreshold oscillations, which can change in response to various physicochemical stimuli. The
nonmonotonic behavior with increasing noise of the phase locking between spikes and subthreshold oscilla-
tions, measured using spectral signal-to-noise ratios and line shape characteristics, are a manifestation of
autonomous stochastic resonance in these systems. The type of bifurcation giving rise to bursting activity
determines the behavior with noise of the mean firing frequency, interspike interval histogram, spike train
power spectrum, and phase locking. In particular, it is shown that a saddle-node bifurcation is not required to
see stochastic resonance~SR! without periodic input when there exists a stable deterministic subthreshold
oscillation. This paper also studies SR in a detailed ionic neuron model, an approach that leads to tests of
hypotheses regarding the nature of noise in real neurons.@S1063-651X~97!12001-3#

PACS number~s!: 87.22.Jb, 05.40.1j
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I. INTRODUCTION

There has been much recent work on stochastic reson
~SR! in excitable neural systems@1#. Work on SR in neuro-
biology has shown that noise helps neurons fire near a
ferred phase of small amplitude external periodic stim
giving them the ability to detect subthreshold signals. At
same time, major advances in neural dynamics and com
tation have highlighted the potential importance of neuro
oscillations as carrier signals for coding mechanisms@2#.
These mechanisms rely on the timing of firing eve
~‘‘spikes’’ ! with respect to single neuron or network oscill
tions. These studies have emphasized that autonomous
threshold and bursting oscillations~Fig. 1! are key elements
of neural coding. The generation of network oscillations w
noise as an essential factor@3#, and the influence of noise o
the timing of spikes with respect to external signals@4# have
previously been investigated. However, the possibility t
noise may enhance timing with respect to autonom
rhythms has received little attention.

Recent experimental@5# and modeling@6# studies of tem-
perature receptors in certain mammals and electric field
ceptors in certain fish have concluded that firing patte
from such neurons are generated by the interplay of s
threshold oscillations and noise. These studies have
gested that such neurons may exhibit SRwithout external
forcing. SR without external forcing has recently been stu
ied in a simple dynamical system right at a saddle-node
furcation @7#. The noise-induced limit cycle and the nois
induced shifts of its mean frequency are consequences o
nonuniformity of the cycle, and of the dependence on no
of the first passage time for such bifurcations@8,9#.

The present paper shows that bursting neuron models
ased into the subthreshold regime as in@5,6#, indeed exhibit
novel types ofautonomousSR. The noise-enhanced pha
locking of spikes is discussed here for two important clas
of bursting dynamics@10#. In the first class, which we refe
to as the ‘‘slow wave’’ case, the full dynamics separate in
551063-651X/97/55~1!/868~9!/$10.00
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a fast subsystem, which produces spikes, and a slow
system, which oscillates autonomously and independentl
the occurrence of spikes. ‘‘Bursts’’ or groups of spikes ar
when the slow wave oscillation brings the membrane volta
past the activation threshold for the fast currents underly
the generation of spikes~see Fig. 1!. This slow oscillation
would persist even if one or more of these fast currents w
inhibited. The Plant model@11# is chosen here as a represe
tative of this class. Below, we study this model with additi

FIG. 1. Membrane voltage vs time for Plant’s model of ‘‘slo
wave’’ bursting@Eqs.~1!–~6!#. ~a! Periodic suprathreshold solutio
for D50 and I520.04. ~b! A subthreshold solution with
D50.0075 andI520.05: noise is required to produce spikes.~c!
Same as~b!, butD50.075. The numerical integration time step
6.2531022 msec. Parameters arel54.0, r50.0017, GI57.84,
Gx50.01,GK50.363,GC50.03,GL50.003,Kc50.0085,VI530,
VK5275,VL5240,VC5140,CM51, tx5235, andtc51.0 msec.
Other parameters and voltage dependencies are as in@11#. All these
parameters produce solutions where voltage is in millivolts a
time is in milliseconds.
868 © 1997 The American Physical Society
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55 869AUTONOMOUS STOCHASTIC RESONANCE IN BURSTING . . .
noise in the regime where the slow wave has a large am
tude, but is slightly subthreshold for the fast dynamics;
other words, no spikes are generated in the absence of n
This is the biologically relevant case@5,6#. We find that this
stochastic model exhibits genuine autonomous SR with
the requirement of a nonuniform limit cycle, in contrast wi
previous studies@7,8#.

In the second class, bursts are driven by spikes, and
we have the label ‘‘spike-driven’’ bursting. This label mea
that the alternation between an active phase, during wh
many spikes are generated in fast succession, and a quie
phase where no spikes occur, requires the occurrenc
spikes. The spikes produced during the active phase c
variations in one or more slow variables, with the result t
the mean membrane potential is progressively lowered u
spikes can no longer be generated. The membrane pote
then increases slowly during this quiescent phase, until ra
firing resumes, and the cycle repeats. The specific mo
used, the Hindmarsh-Rose~HR! model @12#, has recently
been studied in the chaotic bursting regime in the contex
synchronized oscillations in networks of cortical neuro
@13#. Some of the features of the noise-induced firing in t
model are shown here to be similar to those reported in@7#.

Our results are also a demonstration of SR in a deta
Hodgkin-Huxley-type ionic model of neuron firing, an im
portant step in characterizing the influence of various no
sources on the dynamics of real neurons. Our findings cle
indicate that neurons in the two classes described above
sharpen their timing as the intensity of noise increases ov
certain range. This noise can be due to intrinsic conducta
fluctuations in the membrane of the neuron@6#, as well as to
stochastic~see, e.g.,@14#! and/or chaotic@13# synaptic cur-
rents.

The paper is organized as follows. Section II presents
stochastic Plant model, a Hodgkin-Huxley-type ionic mod
of autonomous slow wave bursting biased into a subthre
old regime. Numerical integration results for time series d
tributions of interspike intervals and spike train power sp
tra are also discussed in Sec. II. Section III presents
Hindmarsh-Rose model of bursting near a saddle node,
the associated interval distributions and spike train po
spectra. It also discusses the difference in phase locking
the two models of interest. Results on autonomous stocha
resonance in both models are then presented in Sec. IV.
tion V offers a characterization of the firing statistics, a
discusses the relevance of recently proposed theories to
characterization. The paper concludes with Sec. VI.

II. NOISE-INDUCED BURSTING FROM A SLOW WAVE

A. Model

The Plant model of slow wave bursting@11# with additive
stochastic forcing, used to model thermoreceptors@6#, is
governed by the following equations:

CMV̇5GIm`
3 ~V!h~VI2V!1Gx x~VI2V!1GKn

4~VK2V!

1GC

C

0.51C
~VK2V!1GL~VL2V!1I1h~ t !, ~1!

ḣ5l@h`~V!2h#/th~V!, ~2!
li-
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ṅ5l@n`~V!2n#/tn~V!, ~3!

ẋ5l@x`~V!2x#/tx , ~4!

Ċ5r@Kcx~VC2V!2C#, ~5!

ḣ52
1

tc
h1

1

tc
j~ t !. ~6!

V(t) is a fast variable representing the membrane volta
h,n,x are gating variables,C is the intracellular calcium
concentration, andI is a bias current.h(t) is a zero-
mean Ornstein-Uhlenbeck~OU! process with correlation
time tc and autocorrelation function ^h(t)h(s)&
5(D/tc)exp(2ut2su/tc). The other parameters and the d
tailed voltage dependencies ofth , tn , h` , n` , m` , andx`

are as in Ref.@11#. In the following, we refer to the noise
intensity asD.

B. Numerical integration method

We now discuss the numerical integration of our mod
equations. There are different methods to integrate the
deterministic system Eqs.~1!–~5!. Best results are usually
obtained with implicit schemes, which allow the use of
reasonable time step, all the while ensuring solution stab
~see, e.g.,@15#!. However, one must proceed very cautious
for the integration of these equations in the presence
noise, in order to ensure proper sampling of the stocha
forces. In general this can be achieved using an exp
fixed-step method@16#. Our conservative approach to th
stiff stochastic system is thus based on the method discu
in @16# for systems driven by colored noise. It involves int
grating Eqs.~1!–~6! using a fixed-step explicit scheme fo
Eqs. ~1!–~5!, coupled to an integral Euler algorithm for th
integration of the stochastic OU process. This numerical
tegration of the Gaussian white noise in Eq.~6! produces the
colored OU noise, which, due to its simple additive coupli
to the voltage dynamics Eq.~1!, acts as a driving force on th
deterministic system Eqs.~1!–~5!. The algorithm in@16# is
well adapted to this kind of coupled dynamics.

However, since the deterministic system is stiff, it is im
portant to use such an explicit method with a very small ti
step in order to obtain accurate spike times. This time s
must be small enough to properly integrate the noise proc
~in general, it must be smaller than the noise correlat
time!, and produce a solution to the deterministic syst
with the required accuracy for the study of the phenomena
interest. The time step must also produce sufficient accur
for properties of the stochastic system, such as the inters
interval histogram, or mean interspike interval~see below!.
All these factors lead to lengthy simulations. We have fou
that the simple Euler forward scheme produces the requ
accuracy for a time step oftc/1650.0625 msec. It was found
to be more accurate for the stochastic case than the fou
order Runge-Kutta method for an equivalent computat
time, even though both methods produce practically ident
deterministic solutions for both the bursting and nonburst
cases.

The phenomenon described in our study, i.e., the beha
of the stochastic phase locking as a function of noise int
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870 55ANDRÉ LONGTIN
sity, can already be seen for time steps as large as 0
msec. For these and smaller time steps, the deterministic
lutions and the properties of the stochastic solutions sh
clear convergence; i.e., the percentage in variation of s
tions and properties decreases as the time steps are ha
The time step we have chosen, 0.0625 msec, provides gr
accuracy than those of 0.5–1 msec; it produces 320 inte
tion steps for the approximately 20-msec action potentia

The accuracy of the solutions using this 0.0625-msec t
step was assessed by integrating the deterministic equa
~with zero noise! with a slightly different value ofI ~I5
20.04 instead of20.05!, producing deterministic bursting
with three spikes per burst@Fig. 1~a!#. The corresponding
interspike intervals~ISI’s! were 2604.4, 112.7, and 147.
msec. Halving the time step to 0.03125 yielded new IS
which differed from these by, respectively, 0.3%, 1.1%, a
3%. The ISI that dominates the behaviors studied bel
such as the power at the basic frequency of the noise-indu
bursting, is the long one corresponding to the duration of
quiescent phase. Since the variation of this ISI is very sm
and since the other ISI variations are also small, we h
used the time step of 0.0625. Our integration method sh
clear convergence of ISI’s to almost identical values up
halving the step further and further.

In the presence of noise, the effect of halving the step s
on the spike times can of course only be assessed in a s
tical sense. This follows from the fact that halving the tim
step requires twice as many ‘‘noise’’ values, and the reali
tion is thus different from the original one with the larg
time step. We have found that the ISI histograms~ISIH’s!
obtained using different small time steps have qualitativ
similar shapes. This is basically true for the power spec
also, namely, for the power in the fundamental peak~see
below!, but smaller time steps reveal more detailed struct
in the spectra. The effect of the time step on the mean
~see below! was found to produce larger variations than
the deterministic case. For example, for a midrange no
intensityD50.01, halving the time step produces a mean
within 1.5% of the one for the 0.0625 time step~2545 msec!,
but further reduction produces a convergence toward a v
within 15% of 2545. This is true for the mean ISI with an
without bursts~see below!. This and other tests suggest th
15% is a conservative estimate of the error on signal-to-n
ratios and mean ISI’s calculated below. Of interest also is
fact that the mean ISI values obtained for a given time s
but for different sets of realizations fluctuate statistica
with a standard deviation of approximately 1%.

Clearly, higher accuracy can be achieved with time st
smaller than 0.0625 msec and, most likely, higher accur
and computational efficiency could be achieved using s
ably tested more sophisticated algorithms. This is beyond
scope of our study. Our aim, achieved with the integrat
scheme we have chosen, is to illustrate the basic phen
enology of noise-induced firing in two classes of bursti
cells with a given high level of accuracy. Our results do n
change qualitatively with smaller time steps.

A deterministic solution of Eqs.~1!–~6! ~i.e., a solution
with D50! is shown in Fig. 1~a!. One can see fast spike
occurring on top of a slow wave. This system is decomp
able into a fast subsystem (V,h,n), and a slow subsystem
(x,C) that oscillates autonomously@17#. For zero noise in-
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tensity D50, spikes occur provided this ‘‘slow wave’
reaches the activation threshold of the fast spiking dynam
The fixed point~no firing! to limit cycle ~repetitive firing!
transition in the fast dynamics is of the homoclinic type@17#.
A bursting pattern occurs because the slow wave moves
fast dynamics from fixed point to limit cycle and back.

C. Interspike interval histograms and power spectra

We now discuss the parameter range of interest. T
physiologically relevant cases are the suprathreshold c
where bursting occurs, and also the subthreshold case w
‘‘skipping’’ occurs. Skipping is a form of stochastic phas
locking in which neuron firings occur near a given phase
some periodic forcing, but are separated by a random inte
number of cycles of this periodic forcing. In the context
the five-dimensional Plant model, the slow wave of the sl
subsystem in some sense acts as a periodic forcing on
fast dynamics. In Fig. 1~b!, the bias current isI520.05, and
the slow wave is subthreshold: spikes occur only forD.0.
They appear in bursts of one or more near the crest of
slow wave, their number increasing withD.

Figures 2~a! and 2~c! show ISIH’s computed from many
different realizations of the stochastic Plant model. Interv
at integer multiples of the slow wave period are seen, as w
as short intervals measured between successive spikes i
a ‘‘burst.’’ It is clear from these results that firings are pha
locked to the slow wave, and groups of spikes or ‘‘burst
are separated by a random number of slow wave cycles.
mean number of slow wave periods skipped between bu
decreases asD increases@Figs. 2~a! and 2~c!#, a familiar
feature of systems that display SR@18,19#.

FIG. 2. Interspike interval histograms and spike train pow
spectral densities from simulations of Eqs.~1!–~6! with I520.05.
~a!, ~b! D50.0075.~c!, ~d! D50.075. For each noise intensity, 10
realizations were used to generate 200-bin histograms and~0, 10!
Hz spectrum averages. Parameters and time step are as in Fig
spike is counted if it reaches 0 mV. In each realization, statis
were computed, after 83105 time steps of transients, over a 204.
sec window formed by the next 3.33106 time steps. 4096-point
Hanning-windowed fast Fourier transforms were computed us
spike trains resampled at 0.05 sec@21# ~Nyquist frequencyf s510
Hz!, a value smaller than the smallest computed interval.
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55 871AUTONOMOUS STOCHASTIC RESONANCE IN BURSTING . . .
The phase locking of spikes to the subthreshold s
wave can also be analyzed using spike train power spe
Based on previous studies@20#, the spectra of noise-induce
bursting solutions are expected to have an intricate struc
of harmonics and sidebands. Each spike in a realization
convolved with sin(2p f st)/(2p f st), and then resampled us
ing f s as the Nyquist frequency. This method@21# produces
spectral estimates that are alias-free across a spectrally
window ~0,f s!. The low frequency portion of power spectr
computed from the same realizations as the correspon
ISIH’s, are shown in Figs. 2~b! and 2~d!. Harmonics of the
mean slow wave frequencyf 051/T0 are seen over a curve
background, along with pairs of peaks between these
monics, which are most likely noisy precursors of a Ho
bifurcation @22#.

The signal peaks are broad when compared to simulat
of externally forced stochastically resonant systems~see,
e.g.,@1,23,25#!. This is due to the fact that the dynamics a
autonomous and driven by noise. This leads to phase fl
tuations in the slow wave, a phenomenon known to broa
peaks at harmonics of the signal frequency@26#. We note
that there are two kinds of phase averagings in our com
tations: an ‘‘intrinsic’’ one, due to the noise itself, and a
other one, added to our simulation code, which produ
phase-averaged power spectra. This latter averaging is
for each realization by shifting the spike train by a rando
fraction of the mean slow wave periodT0. This averaging is
useful in comparing simulations with experimental results
which the phase of the slow wave is different at the beg
ning of each spike train measurement. It would be practic
impossible, especially at higher noise levels, to experim
tally control for this phase, in contrast with the case of e
ternal forcing.

At higher noise levels, this second averaging is not n
essary in principle, especially if long transients are discard
since the phase of the slow wave becomes randomized b
noise during the temporal evolution~again in contrast to ex
ternally forced systems!. At low noise, the phase of the slow
wave is not significantly perturbed by the noise, and thus
‘‘added’’ averaging helps. The spectral peaks are never
less broad at low noise because only a small numbe
spikes occur in a given realization. These considerations
apply to the HR model investigated in the next section.

III. NOISE-INDUCED BURSTING
NEAR A SADDLE-NODE BIFURCATION

A. Model

We now investigate noise-induced firing from the su
threshold regime in another important class of bursting n
ron dynamics. The Hindmarsh-Rose model@12# typifies
‘‘spike-driven’’ bursting @10#:

ẋ5y2ax31bx21 i2z1h~ t !, ~7!

ẏ5c2dx22y, ~8!

ż5r @s~x2x* !2z#. ~9!

Note that the HR model in@12# was extended here by addin
an OU processh to the dynamics of the fast voltage variab
ra.
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x, as was done for the Plant model in Sec. II. This model
contrast with the one studied in the previous section, d
not have a deterministic slow subsystem that can oscillat
the absence of spikes. Without noise and in the suprathr
old regime, spikes always accompany the slow oscillation
consequence of the particular bifurcation structure of the
terministic flow. In contrast, the spikes can be eliminated
the suprathreshold regime of the Plant model, e.g., by set
GI50 in Eq. ~1!.

B. Numerical integration method

The discussion in Sec. II B on the choice of numeric
methods also applies to the equations in this section.
fixed step Euler forward scheme coupled to the integral Eu
scheme for the OU process@16# was used as in Sec. II B fo
the same reasons. The accuracy of the spike times in
absence of noise was checked as in the previous section
by slightly changing the bias currenti from the subthreshold
case value 1.25 to the suprathreshold case 1.30. With
chosen time step of 0.00625, this yields a solution with fi
spikes per burst, with ISI’s of 535.5, 15.1, 17.1, 20.8, a
36.0 msec@Fig. 3~a!#. As in Sec. II B, we have found a clea
convergence of all solutions, and thus of the ISI’s, as ti
steps are successively halved. This convergence is seen
ing from time steps eight times as large as 0.00625. Wit
time step of 0.003125, the long ISI corresponding to
duration of the quiescent phase, which is the most impor
ISI from the point of view of our characterization of nois
induced firing, varied by 0.28%, while the others varied
3.2%, 4.1%, 6.3%, and 21%, respectively. Comparison t
simulation with a time step 128 times smaller than 0.006
yielded variations of, respectively, 0.15%, 6.2%, 7.8%, 11
and 32%. The higher error in the last ISI is expected from

FIG. 3. Membrane voltage vs time for the Hindmarsh-Ro
model of ‘‘spike-driven’’ bursting@Eqs. ~7!–~9!#. ~a! Periodic su-
prathreshold solution forD50 andi51.3. ~b! A subthreshold solu-
tion withD50.001 andi51.25: noise is required to produce spike
~c! Same as~b!, butD50.025. The numerical integration time ste
is 6.2531023 msec. Parameters area51, b53, c51, d55, s54,
r50.001,x*521.6, i51.25, andtc50.1 msec. These paramete
produce solutions where voltage is in millivolts~scaled with respect
to experimental values! and time is in milliseconds.
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872 55ANDRÉ LONGTIN
slowness of convergence of the solution due to the cros
of a saddle-node bifurcation into the quiescent phase.

In the presence of noise, we have found that the variati
in mean ISI upon halving the time step from 0.00625
0.003125 are smaller than for the previous model in S
II B. For example, forD50.01, the mean ISI goes from 17
to 161 msec, a 9% variation. Our tests indicate that the e
on mean ISI’s and signal-to-noise ratios calculated below
probably lower than 15%, our estimate for the Plant mod
We note that the mean ISI’s without bursts~see below! vary
less~2–3%! than in the stochastic Plant model upon halvi
the time step. The statistical error on these mean ISI’s
again on the order of 1%, as for the Plant model.

The neurophysiologically relevant regime for this syste
is again the case where bursting occurs, and also the
threshold case where deterministic firing is not possible
the bias parameteri.1.26, the deterministic dynamics a
suprathreshold, and the slow variablez causes periodic
crossings of a saddle-node bifurcation. This produces a s
alternation between two globally stable attractors: a fix
point and a fast limit cycle. A relaxation-type bursting osc
lation then ensues, as shown in Fig. 3~a! for i51.3. The
subthreshold case of interest in our study is characterize
the absence of a deterministic limit cycle. This subthresh
regime is achieved wheni,1.26; noiseless solutions the
converge in an oscillatory manner to a globally stable fix
point ~i.e., the linearization around the fixed point has a p
of complex conjugate eigenvalues!. Noise can then induce
bursting sequences, and the mean time between group
spikes decreases as the noise intensity increases, as se
comparing Fig. 3~b! and Fig. 3~c!.

C. Interspike interval histograms and power spectra

Interspike interval histograms and spike train power sp
tra were also computed in the same manner as those fo
Plant model. They are shown at two noise amplitudes in F
4. In comparison to the slow wave case in Figs. 2~a! and
2~c!, the ISIH modes at integer multiples of the slow tim
scale of bursting for the noisy HR model are less clea
defined; in particular, one does not see many modes s
rated by interval ranges where no events occur. In ot
words, the phase locking of the noisy excitable dynamics
HR to its internal slow time scale is weaker than in the a
tonomous slow wave case of the Plant model.

The reason for this difference in the degree of phase lo
ing is that the slow time scale in the subthreshold HR ca
which is strongly dependent onr ~increasingr shortens the
bursting period in the suprathreshold regime!, is not as
sharply defined as in the Plant model. In the Plant model,
slow wave is self-sustained on a two-dimensional subm
fold, with or without noise. This slow wave is much mo
stable to noise, except if it is about to disappear at so
bifurcation in the slow dynamics@17,6#, which is not the
case here. Further, its high stability is not affected by the
that the transition from fixed point to limit cycle in the fa
subsystem is of the homoclinic type. Hence the slow ti
scale is sharp even in the presence of noise, which lead
strong phase locking when the system is subthreshold. H
ever, for the subthreshold HR case, the slow time scale is
so sharply defined since we are in the presence of a no
g
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induced limit cycle that does not have a deterministic co
terpart. Its sharpness depends on the noise~see Sec. IV!, but
also on the fixed point dynamics and of course on the f
that the dynamics undergo a global saddle-node bifurca
at the threshold for bursting~the period is infinite at such a
bifurcation! @7–9#.

IV. AUTONOMOUS STOCHASTIC RESONANCE

The dependence onD of the fundamental mean frequenc
f 0 and of the phase locking for both models is contrasted
Figs. 5 and 6. Figure 5 shows spike train power spectra
low frequency, calculated from the Plant model for increa
ing noise intensity. The highest peak in each spectrum c
responds tof 0. This frequency is seen to be almost consta
over three orders of magnitude ofD, since the slow wave
which arises from a Hopf bifurcation in the slow subsyste
exists even without noise in the subthreshold regime@17,6#.

Spectra from the HR model for increasingD are shown in
Fig. 6. The main peak atf 0 is clearly broader than the one fo
the Plant model, a consequence again of the noise-indu
nature of the limit cycle. Further,f 0 increases withD over
the range of noise intensities studied, as seen in@7#, although
the increase is minimal at the higherD values used. We
anticipate thatf 0 will decrease at even higher noise leve
following the behavior seen in@7#, but it is likely that the
meaning of the results will then be questionable since ac
potentials will be strongly distorted. At highD, a sharpening
of the 2 f 0 harmonic is seen, due to interspike intervals ne
multiples ofT0/2. These arise because the complex eigenv
ues at the fixed point cause oscillations between bursts
a period near these multiples.

Figure 5 also shows that the fundamental peak sharpen
D'0.075 for the Plant model, while Fig. 6 shows the sa

FIG. 4. Interspike interval histograms and spike train pow
spectral densities for the Hindmarsh-Rose model@Eqs. ~7!–~9!#
with i51.25. ~a!, ~b! D50.001.~c!, ~d! D50.025. For each noise
intensity, 100 realizations were used to generate 200-bin histogr
and ~0, 120! Hz spectrum averages. In each realization, statis
were computed using 2.73106 time steps~17.1-sec window! fol-
lowing 23105 time steps of transients. Parameters and time step
as in Fig. 3. A spike is counted if it reaches 1 mV. The spectra w
computed as in Fig. 2, but with a Nyquist frequency of 120 Hz.
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55 873AUTONOMOUS STOCHASTIC RESONANCE IN BURSTING . . .
for the HR model atD'0.025. These ‘‘resonances’’ can b
analyzed using the signal-to-noise ratio~SNR! @1# and the
degree of coherenceb @7#. This latter quantity is defined a
the peak heighth divided by its relative width,D f / f 0 , where
D f is the peak width at half maximum. Results are shown
Fig. 7~a! for the Plant model and in Fig. 8~a! for the HR
model. It is important to point out that, for both models, t
breadth of thef 0 peaks and the presence of secondary pe
complicates the estimation of signal-to-noise ratios~see Fig.
7!, and is responsible for significant uncertainties~61 dB! at
the highest noise levels shown.

FIG. 5. Spike train power spectral densities computed from
realizations of the Plant model at each of the following values
noise intensityD: 0.00075~1!, 0.0025~2!, 0.01 ~3!, 0.075~4!, and
0.5 ~5!. Other parameters are as in Fig. 1. Only the lower freque
part of the spectra is shown on these lin-log plots.

FIG. 6. Spike train power spectral densities computed from
realizations of the Hindmarsh-Rose model at each of the follow
values of noise intensityD: 0.001~1!, 0.0025~2!, 0.005~3!, 0.025
~4!, 0.0375~5!, and 0.05~6!. Other parameters are as in Fig. 3. On
the lower frequency part of the spectra is shown on these lin
plots.
n

ks

0
f

y

0
g

g

FIG. 7. ~a! Signal-to-noise ratios andb vs D for the Plant
model. We useFSNR510 log10(S/N), whereS(N) is the area of the
f 0 peak ~using 11 bins centered onf 0! above ~below! the noise
floor. This floor is a line joining the relative minimum about hal
way through~0, f 0! to that in (f 0,2 f 0). Also, b5(h f0)/(D f ),
whereh and f 0 are the peak height and centroid, andD f is the peak
width at heighte21/2h. ~b! Mean interval̂ T& vsD using all inter-
vals ~lower curve!, and neglecting the short intervals in bursts~up-
per curve!. The data in~b! are fitted to^T&5C1D

nexp(C2/D),
yielding C150.325,C250.000208,n520.441 ~lower solid line!,
andC151.763,C250.000205,n520.256 ~upper solid line!. The
cutoff between short and long ISI’s was chosen equal to 700 m

FIG. 8. ~a! Signal-to-noise ratios andb vsD for the Hindmarsh-
Rose model. TheFSNR andb are calculated as in Fig. 7.~b! Mean
interval ^T& vs D using all intervals~lower curve!, and neglecting
the short intervals in bursts~upper curve!. The data in~b! are fitted
to ^T&5C1D

n exp(C2/D), yieldingC150.0957,C250.00103,n5
20.115 ~lower solid line!, and C150.221, C2520.000162,n5
20.248 ~upper solid curve!. The cutoff between short and lon
ISI’s was chosen equal to 150 msec.
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In our study, all spikes were used to calculate the sp
train power spectra. The SNR for the slow wave case in F
7~a! is seen to exhibit the familiar SR maximum as a fun
tion of D without external forcing, i.e., autonomous stochas
tic resonance. Past the maximum, the decrease in SNR
pears to be slow. Simulations forD.1.0 are problematic and
are not presented here, as spike size and shape vary en
to make the definition of threshold ambiguous. In contras
the external forcing case@1#, the SNR drop at highD in this
model is also due to the disruption by noise of the cohere
of the autonomous slow wave. Our computations also sh
that, for skipping from a slow wave,b goes through a maxi
mum at a much larger value ofD than that for the SNR~not
shown in Fig. 7!. Hence,b does not appear to be useful
characterize the autonomous stochastic resonance. Th
likely a consequence of the robustness of the slow inte
time scale in this class of bursting neurons, and of the
that b does not directly take into account the noise flo
around the signal peak.

In contrast, for the HR model, the absence of a s
oscillating slow subsystem along with the influence of t
saddle-node bifurcation yields lower SNR values@Fig. 8~a!#.
However, for this class of spike-driven bursters, both
SNR andb can be used to characterize the resonance, as
go through a maximum near similar values ofD. Note that
the small peaks flanking the fundamental peak in Fig. 6~a!,
present for all the noise levels studied, increase the un
tainty in our SNR estimate.

We have not studied SR by comparing time scales of
slow wave~Plant! or of the noise-induced limit cycle~HR!
with the mean firing rate in the absence of these rhyth
@19,23#, since altering parameters to ‘‘turn off’’ these osc
lations and compute a ‘‘spontaneous’’ firing rate will affe
stability properties. Also, although the variation of ISIH pe
heights withD is nonmonotonic, it does not exactly follow
the bona fideresonance for simple bistable systems@19#.
Noise likely samples other behaviors of these complex m
els, which alter the smooth progression of statistics withD.

V. CHARACTERIZATION OF THE FIRING STATISTICS

Analysis of the dependence of the mean interval^T& and
of the SNR onD can provide insight into the residence-tim
statistics, and thus into the nature of the noise activation
threshold for these complex dynamical systems. A rec
review of such questions for simple neuron models can
found in @14#. The mean interval is plotted againstD for the
Plant model in Fig. 7~b! and for the HR model in Fig. 8~b!.
In both cases, results with and without inclusion of the sh
intervals inside groups of spikes~‘‘bursts’’ ! are presented
When these short intervals are excluded, the remaining in
vals represent the residence time in the nonfiring state. W
the short intervals are considered, the residence-time in
pretation implies that the system returns to the nonfiring s
after each spike, rather than after each group of spikes
clusion of the short intervals lowers the^T& values, and also
changes the slope and curvature of the^T& versusD relation-
ships.

We have found that, in the range of model paramet
where autonomous SR occurs, an increase inD produces a
decrease in̂T&, as expected for subthreshold dynamics. F
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the slow wave case in Fig. 7~b!, the data are well fitted to a
relationship of the form

^T&5C1D
n exp~C2 /D !, ~10!

shown as the solid lines. For the HR case in Fig. 8~b!, the
curves are also well fitted to this expression, yet the sit
tions with and without the short intervals appear to be qu
tatively different. This may be due to the uncertainties on
computed values of the mean ISI’s. Note that for HR w
short intervals excluded, the fit is not physically meaning
at small noise, where the mean interval goes to zero ins
of infinity. This is due to the uncertainty on the small valu
of C2. However, these data are also well fitted by a sim
power law, with n520.207, C150.257, andC250 ~not
shown!, which has the proper behavior at small and lar
noise. Further, this is compatible with the power law dep
dence~although with a different exponentn521/3! of the
mean first passage time found for a simple one-dimensio
model of the center manifold dynamics for a system nea
saddle-node bifurcation@9#.

The fact that the above expression Eq.~10! provides a
proper fit to the data implies one of many possibilities. F
example, one can follow a simple analysis in which the a
proximate time-dependent Kramers rate, normally used
external forcing@24,25#, is written rather in terms of the
phaseu of an autonomous oscillation,

a~u!5exp@2~U/D !~12h cosu!#, ~11!

whereU is a constant representing an effective barrier hei
or threshold for the spiking process~i.e., for the fast dynam-
ics!. In the HR case, the autonomous oscillation is the no
induced limit cycle, while in the Plant case, it is the slo
wave. This mean rate, which can be viewed as a mean fi
rate ~in spikes per second!, is well approximated by the re
ciprocal of ^T&, this average being computed across ma
realizations~the mean rate and̂T& are identical if the first
spike corresponds with the beginning of the averaging
riod!. The average ofa~u! over one oscillation cycle is
a0[^a~u!&t5exp(2U/D)I 0(z), where z[Uh/D and I 0 is
the modified Bessel function of order zero. In our study, it
clear thath,1, since the dynamics are subthreshold, a c
dition required to see stochastic resonance in the forma
of Ref. @25#. However, it is not clear whetherz is small, of
order one, or large. Ifz is large ~in practice, forz.2!, the
asymptotic expansion forI 0(z) yields

a0'
1

A2p
exp@2U~12h!/D#S D

Uh D 1/2. ~12!

Thus, the mean ratea0 would be approximated by Eq.~10!
with n520.5, andC25U~12h!.0. For the Plant model
there is qualitative agreement with this analysis, since
find n520.44 when the short intervals are counted, and a
a positive value forC2.

Another possibility is that the Kramers rate approximati
is not valid, or has a prefactorf (D):

a~ t !5 f ~D !exp@2~U/D !~12h cosu!#. ~13!

This leads to an expression for the mean rate
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55 875AUTONOMOUS STOCHASTIC RESONANCE IN BURSTING . . .
a05 f ~D !exp~2U/D !I 0~z!, ~14!

which, for z,2, can be approximated bya0
5f (D)exp~2U/D!. This would be compatible with our fit if
z,2 and f (D)5D2n. This firing rate would further lead
using the formalism in@25#, to the following expression for
the SNR~FSNR!:

FSNR510 log10F2I 12~z!

I 0~z!
exp@2U/D# f ~D !G . ~15!

However, this expression does not provide a very satisfy
fit to our numerical data~not shown!.

Intuitively, the modulated shot noise theory@25# would
most likely apply to the slow wave case studied here, si
this is the case where the autonomous rhythm is very ro
to noise, as in cases with external forcing for which th
theory was developed. Even for the Plant case, however
behavior of the SNR as a function ofD is not well fitted by
this theory. This is not too surprising for the following re
sons. First, that theory assumes that firing events are un
related. Thus, it is not expected to predict the mid-to-h
noise behavior, since the spikes tend to be strongly co
lated due to bursting~i.e., the fast limit cycle dynamics!, and
also because the theory does not take a refractory period
account, i.e., the time after a spike during which no ot
spikes can occur.

Also, the theory in@25# was developed for a simple per
odically modulated shot noise process, not for a comp
nonlinear ionic model of bursting dynamics. In particula
when skipping occurs, there is a strong preference for fir
near a given phase of the autonomous oscillation, ma
because of the fast limit cycle dynamics. This should
contrasted with a more continuous modulation of a firi
rate, implicit in the modulated stochastic Poisson point p
cess formulation. This is obvious from the time series
Figs. 1 and 3. Thus, in the case of bursting neurons, the
is not accurately fitted by Eq.~11!, since higher harmonics o
the internal frequency have to be included~see, e.g.,@27#!.
Because of the exponential nonlinearity, these harmonic
turn affect the value of the amplitude of the fundamen
component, which will then, in the formalism of@25#, affect
the SNR. A further shortcoming of this approach, when o
long intervals are considered, is the implication that at m
one spike can occur during a cycle of the slow oscillatio
even though the time scale of this oscillation is much lar
than the refractory period. This is not expected for mod
lated shot noise, in which zero, one, or more spikes
occur during a cycle under these conditions. Clearly, furt
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refinements of the theory in@25# or other theories are neede
to account for the behavior of the mean firing rate and S
for increasing noise.

VI. CONCLUSION

In summary, we have shown that autonomous stocha
resonance can occur in a wide variety of neurons wh
bursting dynamics fall into two distinct classes. Our stu
also investigates stochastic resonance in a full ionic desc
tion of neural firing. The study of such models with stocha
tic forcing is essential to test more refined hypotheses reg
ing the nature of the noise~e.g., additive noise currents
and/or synaptic events, and/or conductance fluctuations! in
real neurons.

It is important to realize that the motivation to study th
periodicity of the spike trains in the stochastic Plant and H
models is not to find conditions under which spikes a
maximally phase locked to some internal oscillation. Clea
this can be achieved by simply considering the suprathre
old case of bursting without noise. Rather, the point here
that real receptor neurons appear to be using the subthres
regime in order to encode certain stimuli@5,6#, such as varia-
tions in temperature and/or electric fields. Our study th
focuses on the dynamics of this regime, and in particular,
how sensitive the firing pattern is to the noise, the dc b
~mainly through parametersI and i !, and the bifurcation
leading to the subthreshold dynamics. Fluctuations in no
inputs or dc bias, while producing relatively little change
the mean firing rate, strongly alter the phase locking of
spikes. As these quantities change in response to envi
mental stimuli, this sensitivity of the phase locking may
of great potential benefit for signal encoding purposes.

Finally, the behaviors as a function ofD of the mean
firing rate, with and without taking bursts into account, a
of the ISIH’s, spike train power spectra, SNR, andb uncov-
ered in our work can serve to classify the subthreshold
namics in real bursting neurons. Also, the addition of no
currents to the experimental preparations should prod
shorter skips between firings@following Figs. 7~b! and 8~b!#
if the dynamics are subthreshold to begin with. Thus, no
can serve to probe the origins of stochastically phase loc
behavior in real neurons in isolation or in networks.
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